论文标题
部分可观测时空混沌系统的无模型预测
The use of deep learning enables high diagnostic accuracy in detecting syndesmotic instability on weight-bearing CT scanning
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Delayed diagnosis of syndesmosis instability can lead to significant morbidity and accelerated arthritic change in the ankle joint. Weight-bearing computed tomography (WBCT) has shown promising potential for early and reliable detection of isolated syndesmotic instability using 3D volumetric measurements. While these measurements have been reported to be highly accurate, they are also experience-dependent, time-consuming, and need a particular 3D measurement software tool that leads the clinicians to still show more interest in the conventional diagnostic methods for syndesmotic instability. The purpose of this study was to increase accuracy, accelerate analysis time, and reduce inter-observer bias by automating 3D volume assessment of syndesmosis anatomy using WBCT scans. We conducted a retrospective study using previously collected WBCT scans of patients with unilateral syndesmotic instability. 144 bilateral ankle WBCT scans were evaluated (48 unstable, 96 control). We developed three deep learning (DL) models for analyzing WBCT scans to recognize syndesmosis instability. These three models included two state-of-the-art models (Model 1 - 3D convolutional neural network [CNN], and Model 2 - CNN with long short-term memory [LSTM]), and a new model (Model 3 - differential CNN LSTM) that we introduced in this study. Model 1 failed to analyze the WBCT scans (F1-score = 0). Model 2 only misclassified two cases (F1-score = 0.80). Model 3 outperformed Model 2 and achieved a nearly perfect performance, misclassifying only one case (F1-score = 0.91) in the control group as unstable while being faster than Model 2.