论文标题

CMC Tori中的Berger球及其双重

CMC Tori in the Generalised Berger Spheres and their Duals

论文作者

Gegenfurtner, Johanna Marie

论文摘要

由于重要的应用,对最小表面的研究具有悠久的历史。鉴于固定的边界,人们希望最大程度地减少表面积:例如,可以将其最小化,以最大程度地减少建筑物的屋顶区域。同样,寻找恒定的平均曲率(CMC)为我们提供了许多有趣的物理应用:最简单的例子之一是肥皂泡。但是,在这项工作中,我们在三维球体$ s^3 $及其双空间$σ^3 $中以最小和恒定的平均曲率表面占据自己。 在第1章中,我们简要概述了我们将使用的Riemannian和Lorentzian几何形状的工具。然后,我们仔细研究$ s^3 $,计算其Levi-Civita连接和截面曲线:在第2章中,关于Riemannian Metric g,以及第4章在Lorentzian Metric H中。此外,我们在第3章中确定了内部($ s^3 $,g)内部($ s^3 $,g)以及第5章中($ s^3 $,h)的一些最小和CMC。 然后,我们继续进行$ s^3 $的双空间$σ^3 $。在第6章中,我们计算了相对于G的Levi-Civita连接和截面曲率,以及第8章中的H。我们再次在第7章中($σ^3 $,g)中的某个家庭的最小和CMC Tori在第9章中($σ^3 $,H)中的($σ^3 $ g)。 在附录中,读者将找到一个枫树程序。它写成的是为了检查$ s^3 $ case的计算,但可以很容易地适应$σ^3 $。

The study of minimal surfaces has a long history, due to the important applications. Given a fixed boundary, one wants to minimise the surface area: this can be used, for example, to minimise the area of the roof of a building. Similarly, looking for constant mean curvature (CMC) provides us with many interesting applications in physics: one of the easiest examples are soap bubbles. In this work however we occupy ourselves with minimal and constant mean curvature surfaces in the three-dimensional sphere $S^3$ and its dual space $Σ^3$. In Chapter 1 we give a brief overview of the tools of Riemannian and Lorentzian geometry that we will use. We then take a closer look at $S^3$, computing its Levi-Civita connection and sectional curvatures: in Chapter 2 with respect to the Riemannian metric g and in Chapter 4 with respect to the Lorentzian metric h. Further, we determine some minimal and CMC tori inside ($S^3$, g) in Chapter 3 and in ($S^3$, h) in Chapter 5. We then proceed with the dual space $Σ^3$ of $S^3$. In Chapter 6, we calculate the Levi-Civita connection and sectional curvatures with respect to g, and with respect to h in Chapter 8. Again we look for minimal and CMC tori of a certain family in ($Σ^3$, g) in Chapter 7 and in ($Σ^3$, h) in Chapter 9. In the appendix, the reader will find a Maple program. It was written to check the computations of the $S^3$ cases, but it can easily be adapted to$Σ^3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源