论文标题
图形代数上的Injoint循环的图表代数
Injectives over Leavitt path algebras of graphs with disjoint cycles
论文作者
论文摘要
令$ k $为任何字段,让$ e $为有限的图表,其属性$ e $中的每个顶点最多都是一个周期的基础(我们说这样的图形满足条件(AR))。我们明确地构建了Leavitt Path eLgebra $ L_K(E)$的每个简单左模块的注入式信封。我们的构建的主要思想是模块的“正式功率系列”扩展,从而为所有满足条件的图表开发了对$ L_K(e)$上面的简单模块的注射信封的理解,以前是针对Toeplitz代数上的简单模块所获得的。
Let $K$ be any field, and let $E$ be a finite graph with the property that every vertex in $E$ is the base of at most one cycle (we say such a graph satisfies Condition (AR)). We explicitly construct the injective envelope of each simple left module over the Leavitt path algebra $L_K(E)$. The main idea girding our construction is that of a "formal power series" extension of modules, thereby developing for all graphs satisfying Condition (AR) the understanding of injective envelopes of simple modules over $L_K(E)$ achieved previously for the simple modules over the Toeplitz algebra.