论文标题

线性系统以通用速率的近似解决方案

Approximate Solutions of Linear Systems at a Universal Rate

论文作者

Steinerberger, Stefan

论文摘要

令$ a \ in \ mathbb {r}^{n \ times n} $是可逆的,$ x \ in \ mathbb {r}^n $ unknown和$ b = ax $给定。我们对近似解决方案感兴趣:vectors $ y \ in \ mathbb {r}^n $,这样$ \ | ay -b \ | $很小。我们证明,对于所有$ 0 <\ varepsilon <1 $,$ k $正交的投影在由$ a $ a $的行产生的$ n $超平面上,其中$$ k \ leq 2 \ log \ log \ left(\ frac {\ frac {1}} \ varepsilon^{2}} $$将原点映射到\ mathbb {r}^n $满足$ \ |的vector $ y \ y \ y -ax \ | \ leq \ varepsilon \ cdot \ | a \ | \ cdot \ | x \ | $。我们注意到,$ k $的上限与矩阵$ a $无关。从某种意义上说,此过程是稳定的。 \ leq 2 \ | x \ | $。存在证明是基于对随机kaczmarz方法的概率精制分析,该分析在求解$ a x = b $的较高可能性时似乎可以达到此速率。

Let $A \in \mathbb{R}^{n \times n}$ be invertible, $x \in \mathbb{R}^n$ unknown and $b =Ax $ given. We are interested in approximate solutions: vectors $y \in \mathbb{R}^n$ such that $\|Ay - b\|$ is small. We prove that for all $0< \varepsilon <1 $ there is a composition of $k$ orthogonal projections onto the $n$ hyperplanes generated by the rows of $A$, where $$k \leq 2 \log\left(\frac{1}{\varepsilon} \right) \frac{ n}{ \varepsilon^{2}}$$ which maps the origin to a vector $y\in \mathbb{R}^n$ satisfying $\| A y - Ax\| \leq \varepsilon \cdot \|A\| \cdot \| x\|$. We note that this upper bound on $k$ is independent of the matrix $A$. This procedure is stable in the sense that $\|y\| \leq 2\|x\|$. The existence proof is based on a probabilistically refined analysis of the Random Kaczmarz method which seems to achieve this rate when solving for $A x = b$ with high likelihood.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源