论文标题
同态加密下的机器学习有效修剪
Efficient Pruning for Machine Learning Under Homomorphic Encryption
论文作者
论文摘要
隐私机器学习(PPML)解决方案正在广泛流行。其中,许多人依赖于提供模型和数据机密性的同态加密(HE),但以较大的延迟和记忆要求为代价。修剪神经网络(NN)参数可改善明文ML中的延迟和内存,但如果直接应用于基于HE的PPML,则影响很小。 我们介绍了一个名为HE-PEX的框架,该框架包括新的修剪方法,在称为瓷砖张量的包装技术之上,用于减少PPML推断的延迟和内存。 HE-PEX使用排列来修剪额外的密文,并扩展以恢复推理损失。我们证明了在PPML任务上,在NNS中修剪完全连接和卷积层的有效性,即图像压缩,降解和分类,并使用自动编码器,多层透明度(MLPS)和卷积神经网络(CNNS)。 我们在一个名为Helayers的框架上实施和部署网络,该框架的推理速度提高了10-35%,而在未经张开的网络中,内存需求减少了17-35%,相当于在2.5%的网络中,相对于未经固定的网络的降级降低了33-65%。与PPML的最先进的修剪技术相比,我们的技术平均生成了相同的降解限制的网络,平均密码少了70%。
Privacy-preserving machine learning (PPML) solutions are gaining widespread popularity. Among these, many rely on homomorphic encryption (HE) that offers confidentiality of the model and the data, but at the cost of large latency and memory requirements. Pruning neural network (NN) parameters improves latency and memory in plaintext ML but has little impact if directly applied to HE-based PPML. We introduce a framework called HE-PEx that comprises new pruning methods, on top of a packing technique called tile tensors, for reducing the latency and memory of PPML inference. HE-PEx uses permutations to prune additional ciphertexts, and expansion to recover inference loss. We demonstrate the effectiveness of our methods for pruning fully-connected and convolutional layers in NNs on PPML tasks, namely, image compression, denoising, and classification, with autoencoders, multilayer perceptrons (MLPs) and convolutional neural networks (CNNs). We implement and deploy our networks atop a framework called HElayers, which shows a 10-35% improvement in inference speed and a 17-35% decrease in memory requirement over the unpruned network, corresponding to 33-65% fewer ciphertexts, within a 2.5% degradation in inference accuracy over the unpruned network. Compared to the state-of-the-art pruning technique for PPML, our techniques generate networks with 70% fewer ciphertexts, on average, for the same degradation limit.