论文标题

具有随机人行为模型的人类在循环多旋转系统的预测

State Prediction of Human-in-the-Loop Multi-rotor System with Stochastic Human Behavior Model

论文作者

Choi, Joonwon, Byeon, Sooyung, Hwang, Inseok

论文摘要

可及性分析是一种广泛使用的方法,可以分析人类在环境物理系统(HILCPS)的安全性。该策略使HILCP可以通过预测系统的到达状态来提前反对即将发生的威胁。但是,如果预测仅依赖于系统动态而没有明确考虑人类的行为,则可能会导致不必要的保守范围的设置,因此可能会高估风险。为了降低可及性分析的保守性,我们提出了一种状态预测方法,该方法考虑了代表为高斯混合模型(GMM)的随机人类行为模型。在本文中,我们将重点放在近乎崩溃的情况下的多旋转器上。随机人类行为模型是使用实验数据训练的,以代表人类操作员的逃避操纵。然后,我们可以使用高斯混合物回归(GMR)从受过训练的随机人类行为模型中检索人类控制输入概率分布。该算法根据给定的动力学和检索到的人类控制输入概率分布来预测多转子未来状态的概率分布。此外,提出的状态预测方法考虑了以GMM为模型的初始状态的不确定性,从而产生更强大的性能。提供了人类主题实验结果,以证明所提出的算法的有效性。

Reachability analysis is a widely used method to analyze the safety of a Human-in-the-Loop Cyber Physical System (HiLCPS). This strategy allows the HiLCPS to respond against an imminent threat in advance by predicting reachable states of the system. However, it could lead to an unnecessarily conservative reachable set if the prediction only relies on the system dynamics without explicitly considering human behavior, and thus the risk might be overestimated. To reduce the conservativeness of the reachability analysis, we present a state prediction method which takes into account a stochastic human behavior model represented as a Gaussian Mixture Model (GMM). In this paper, we focus on the multi-rotor in a near-collision situation. The stochastic human behavior model is trained using experimental data to represent human operators' evasive maneuver. Then, we can retrieve a human control input probability distribution from the trained stochastic human behavior model using the Gaussian Mixture Regression (GMR). The proposed algorithm predicts the probability distribution of the multi-rotor's future state based on the given dynamics and the retrieved human control input probability distribution. Besides, the proposed state prediction method considers the uncertainty of the initial state modeled as a GMM, which yields more robust performance. Human subject experiment results are provided to demonstrate the effectiveness of the proposed algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源