论文标题
D2HNET:与层次网络的联合去核和脱毛,用于稳健的夜图像修复
D2HNet: Joint Denoising and Deblurring with Hierarchical Network for Robust Night Image Restoration
论文作者
论文摘要
使用现代智能手机摄像机的夜成像由于影像系统中的光子计数低和不可避免的噪声而变得麻烦。直接调整曝光时间和ISO等级在弱光条件下无法同时获得锋利和无噪声图像。尽管已经提出了许多方法来增强嘈杂或模糊的夜间图像,但由于两个主要原因,它们在现实世界中的照片仍然不令人满意:1)单个图像中的信息有限,2)合成训练图像和现实世界中照片之间的域间隙(例如,Blur区域和分辨率的差异和分辨率和分辨率的差异)。为了利用连续的长期和短曝光图像中的信息,我们提出了一条基于学习的管道来融合它们。开发了D2HNET框架,以通过在短曝光图像的指导下去缩短和增强长期暴露图像来恢复高质量的图像。为了缩小域间隙,我们利用了两相deblernet-enhancenet架构,该体系结构在固定的低分辨率上执行准确的模糊去除,以便它能够处理不同分辨率输入的大范围。此外,我们从高清视频中合成了D2数据和实验。验证集和真实照片的结果表明,我们的方法获得了更好的视觉质量和最先进的定量分数。可以在https://github.com/zhaoyuzhi/d2hnet上找到D2HNET代码和D2-DATASET。
Night imaging with modern smartphone cameras is troublesome due to low photon count and unavoidable noise in the imaging system. Directly adjusting exposure time and ISO ratings cannot obtain sharp and noise-free images at the same time in low-light conditions. Though many methods have been proposed to enhance noisy or blurry night images, their performances on real-world night photos are still unsatisfactory due to two main reasons: 1) Limited information in a single image and 2) Domain gap between synthetic training images and real-world photos (e.g., differences in blur area and resolution). To exploit the information from successive long- and short-exposure images, we propose a learning-based pipeline to fuse them. A D2HNet framework is developed to recover a high-quality image by deblurring and enhancing a long-exposure image under the guidance of a short-exposure image. To shrink the domain gap, we leverage a two-phase DeblurNet-EnhanceNet architecture, which performs accurate blur removal on a fixed low resolution so that it is able to handle large ranges of blur in different resolution inputs. In addition, we synthesize a D2-Dataset from HD videos and experiment on it. The results on the validation set and real photos demonstrate our methods achieve better visual quality and state-of-the-art quantitative scores. The D2HNet codes and D2-Dataset can be found at https://github.com/zhaoyuzhi/D2HNet.