论文标题

自我监督点云学习的蒙版表面预测

Masked Surfel Prediction for Self-Supervised Point Cloud Learning

论文作者

Zhang, Yabin, Lin, Jiehong, He, Chenhang, Chen, Yongwei, Jia, Kui, Zhang, Lei

论文摘要

蒙面自动编码是一种流行而有效的自我监督学习方法,可以指向云学习。但是,大多数现有方法仅重建掩盖点并忽略本地几何信息,这对于了解点云数据也很重要。在这项工作中,据我们所知,我们首次尝试将局部几何信息明确考虑到掩盖的自动编码中,并提出一种新颖的蒙版表面预测(MaskSurf)方法。具体而言,考虑到以高比例掩盖的输入点云,我们学习了一个基于变压器的编码器码头网络,通过同时预测表面位置(即点)和每一个表面方向(即,正常)来估算基础掩盖的表面。点和正态的预测由倒角距离和新引入的位置指数的正常距离以设定的方式进行监督。在三种微调策略下,我们的Masksurf在六个下游任务上得到了验证。特别是,在OBJ-BG设置下的ScanObjectnn的现实世界数据集上,MaskSurf的表现优于其最接近的竞争对手Point-Mae,以1.2 \%的比例,证明了掩盖的表面预测的优势比蒙版的预测的优势是蒙版的预测。代码将在https://github.com/ybzh/masksurf上找到。

Masked auto-encoding is a popular and effective self-supervised learning approach to point cloud learning. However, most of the existing methods reconstruct only the masked points and overlook the local geometry information, which is also important to understand the point cloud data. In this work, we make the first attempt, to the best of our knowledge, to consider the local geometry information explicitly into the masked auto-encoding, and propose a novel Masked Surfel Prediction (MaskSurf) method. Specifically, given the input point cloud masked at a high ratio, we learn a transformer-based encoder-decoder network to estimate the underlying masked surfels by simultaneously predicting the surfel positions (i.e., points) and per-surfel orientations (i.e., normals). The predictions of points and normals are supervised by the Chamfer Distance and a newly introduced Position-Indexed Normal Distance in a set-to-set manner. Our MaskSurf is validated on six downstream tasks under three fine-tuning strategies. In particular, MaskSurf outperforms its closest competitor, Point-MAE, by 1.2\% on the real-world dataset of ScanObjectNN under the OBJ-BG setting, justifying the advantages of masked surfel prediction over masked point cloud reconstruction. Codes will be available at https://github.com/YBZh/MaskSurf.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源