论文标题

在$τ$上 - 使用多项式增长的对称代数的有限性

On $τ$-tilting finiteness of symmetric algebras of polynomial growth

论文作者

Miyamoto, Kengo, Wang, Qi

论文摘要

在本文中,我们报告了$τ$在代数封闭的字段上的某些有限维代数的有限性,包括多项式增长的对称代数,$ 0 $ -HECKE代数和$ 0 $ -SCHUR代数。因此,我们发现衍生的等效性保留了$τ$在多项式增长的对称代数上的有限性,而多项式生长的自注射蜂窝代数为$τ$是有限的。此外,表示代表性和$τ$ - 超过$ 0 $ -HECKE代数和$ 0 $ -Schur代数(除了少数例外)的有限性。

In this paper, we report on the $τ$-tilting finiteness of some classes of finite-dimensional algebras over an algebraically closed field, including symmetric algebras of polynomial growth, $0$-Hecke algebras and $0$-Schur algebras. Consequently, we find that derived equivalence preserves the $τ$-tilting finiteness over symmetric algebras of polynomial growth, and self-injective cellular algebras of polynomial growth are $τ$-tilting finite. Furthermore, the representation-finiteness and $τ$-tilting finiteness over $0$-Hecke algebras and $0$-Schur algebras (with few exceptions) coincide.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源