论文标题
拓扑优化应用中的深度能量方法
Deep energy method in topology optimization applications
论文作者
论文摘要
本文通过引入基于Pinns的框架,探讨了在拓扑优化(TO)中应用物理信息的神经网络(PINN)的可能性。该框架通过深能量方法(DEM)解决了正向弹性问题。我们没有训练单独的神经网络来更新密度分布,而是利用了合规性最小化问题是自偶会直接根据DEM模型的位移字段来表达元素灵敏度的事实,因此反向问题不需要其他神经网络。移动渐近线的方法用作更新密度分布的优化器。 DEM模型的上下文中描述了Neumann,Dirichlet和周期性边界条件的实施。提出了三个数值示例以证明框架能力:(1)在不同几何形状和加载下2D中的合规性最小化,(2)3D中的合规性最小化,(3)(3)均化剪切模量最大化设计2D Meta材料单位细胞。结果表明,来自基于DEM的框架的优化设计与有限元方法生成的框架非常可比,并阐明了将基于PINN的仿真方法集成到经典计算机械问题问题的新方法。
This paper explores the possibilities of applying physics-informed neural networks (PINNs) in topology optimization (TO) by introducing a fully self-supervised TO framework that is based on PINNs. This framework solves the forward elasticity problem by the deep energy method (DEM). Instead of training a separate neural network to update the density distribution, we leverage the fact that the compliance minimization problem is self-adjoint to express the element sensitivity directly in terms of the displacement field from the DEM model, and thus no additional neural network is needed for the inverse problem. The method of moving asymptotes is used as the optimizer for updating density distribution. The implementation of Neumann, Dirichlet, and periodic boundary conditions are described in the context of the DEM model. Three numerical examples are presented to demonstrate framework capabilities: (1) Compliance minimization in 2D under different geometries and loading, (2) Compliance minimization in 3D, and (3) Maximization of homogenized shear modulus to design 2D meta material unit cells. The results show that the optimized designs from the DEM-based framework are very comparable to those generated by the finite element method, and shed light on a new way of integrating PINN-based simulation methods into classical computational mechanics problems.