论文标题
软regge常数的异常尺寸
Anomalous Dimensions from Soft Regge Constants
论文作者
论文摘要
使用有效的野外理论(EFT)形式主义进行正向散射,我们重新考虑了$ 2 \ 2 $散射幅度在regge限制中的分解。扩大由Glauber交换数量标记的规格不变运算符中的幅度,使我们能够将标准影响因子进一步分配到单独的共线和软功能中。软函数是通用的,并描述了辐射弹丸交换的重gluon状态的辐射校正。值得注意的是,我们发现,在两环尖和两环速度异常方面,单个恢复的gluon状态的单循环软函数被赋予$ \ mathcal {o}(ε)$。我们认为,这种迭代结构遵循在向前散射极限中交叉对称的简单作用,在EFT中,这使我们能够用更简单的glauber环代替了软环的发散部分。我们使用此对应关系来简单地使用EFT对两环雷格轨迹进行简单计算。然后,我们在较高的扰动顺序上探索它的含义,并从对所有回路订单中的最大重要贡献中获得最大重要的贡献,即〜任何$ k $的$ \ simα_s^{k+1} n_f^k $对于任何$ k $,如果$ n_f $是$ n_f $是无质量的无质量口味。这些简化表明,EFT限制的EFT方法将有助于探索和进一步了解Regge限制的结构。
Using an effective field theory (EFT) formalism for forward scattering, we reconsider the factorization of $2\to 2$ scattering amplitudes in the Regge limit. Expanding the amplitude in gauge invariant operators labelled by the number of Glauber exchanges, allows us to further factorize the standard impact factors into separate collinear and soft functions. The soft functions are universal, and describe radiative corrections to the Reggeized gluon states exchanged by the collinear projectiles. Remarkably, we find that the one-loop soft function for the single Reggeized gluon state is given to $\mathcal{O}(ε)$ in terms of the two-loop cusp and two-loop rapidity anomalous dimensions. We argue that this iterative structure follows from the simple action of crossing symmetry in the forward scattering limit, which in the EFT allows us to replace the divergent part of a soft loop by a much simpler Glauber loop. We use this correspondence to provide a simple calculation of the two-loop Regge trajectory using the EFT. We then explore its implications at higher perturbative orders, and derive the maximally matter dependent contributions to the Regge trajectory to all loop orders, i.e.~the terms $\sim α_s^{k+1}n_f^k$ for any $k$, where $n_f$ is the number of massless flavors. These simplifications suggests that the EFT approach to the Regge limit will be helpful to explore and further understand the structure of the Regge limit.