论文标题

在C级耀斑期间,染色层的辐射损失

Radiative losses in the chromosphere during a C-class flare

论文作者

Yadav, Rahul, Rodríguez, J. de la Cruz, Kerr, Graham S., Baso, C. J. Díaz, Leenaarts, Jorrit

论文摘要

太阳耀斑向电晕释放了大量能量。大部分能量将其运输到较低的大气中,从而导致色层加热。在耀斑期间将能量运送到下太阳大气的机制仍未完全了解。我们的目的是估计色球辐射损失在C级耀斑的脚步处的时间演变,以便将观察性约束设置在Radyn Flare模拟的电子束参数上。我们估计了使用半经验模型大气估计氢气的辐射损失,并估计了单一离子化的Ca和Mg。为了估计染色层中综合的辐射损失,净冷却速率在温度最低和温度达到10 kk的高度之间进行了整合。净冷却速率的分层表明,CA IR三重态线是导致大气中大多数辐射损失的原因。在Flare的峰值时间内,CA II H&K和MG II H&K线的贡献与Ca ir Triplet相当($ \ sim $ 32 kW m $^{ - 2} $)。由于我们的耀斑是一个相对较弱的事件,因此染色体不会在11 kk以上加热,进而产生柔和的lyα贡献($ \ sim $ 7 kW m $^m $^{ - 2} $)。总体集成辐射损失的时间演变表现出急剧上升的损失(0.4 kW m $^{ - 2} $ s $^{ - 1} $)和相对较慢的衰减(0.23 kW〜m $^{ - 2} $ s $ s $^{ - 1} $)。在耀斑峰值时间左右达到了总辐射损失的最大值,对于位于脚上的一个像素,可以达到175 kW m $^{ - 2} $。经过一项小型参数研究,我们在辐射损失的幅度和整体大气结构方面找到了最佳的模型数据一致性,并在注入的能量通量中使用Radyn耀斑模拟为$ 5 \ times10^{10} $ erg s $^s $^{ - 1} $^{ - 1} $ cm $^{ - 2} $。

Solar flares release an enormous amount of energy into the corona. A substantial fraction of this energy is transported to the lower atmosphere, which results in chromospheric heating. The mechanisms that transport energy to the lower solar atmosphere during a flare are still not fully understood. We aim to estimate the temporal evolution of the radiative losses in the chromosphere at the footpoints of a C-class flare, in order to set observational constraints on the electron beam parameters of a RADYN flare simulation. We estimated the radiative losses from hydrogen, and singly ionized Ca and Mg using semi-empirical model atmospheres. To estimate the integrated radiative losses in the chromosphere the net cooling rates were integrated between the temperature minimum and the height where the temperature reaches 10 kK. The stratification of the net cooling rate suggests that the Ca IR triplet lines are responsible for most of the radiative losses in the flaring atmosphere. During the flare peak time, the contribution from Ca II H & K and Mg II h & k lines are strong and comparable to the Ca IR triplet ($\sim$32 kW m$^{-2}$). Since our flare is a relatively weak event the chromosphere is not heated above 11 kK, which in turn yields a subdued Lyα contribution ($\sim$7 kW m$^{-2}$). The temporal evolution of total integrated radiative losses exhibits sharply-rising losses (0.4 kW m$^{-2}$ s$^{-1}$) and a relatively slow decay (0.23 kW~m$^{-2}$ s$^{-1}$). The maximum value of total radiative losses is reached around the flare peak time, and can go up to 175 kW m$^{-2}$ for a single pixel located at footpoint. After a small parameter study, we find the best model-data consistency in terms of the amplitude of radiative losses and the overall atmospheric structure with a RADYN flare simulation in the injected energy flux of $5\times10^{10}$ erg s$^{-1}$ cm$^{-2}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源