论文标题

基于树的合奏的强大反事实解释

Robust Counterfactual Explanations for Tree-Based Ensembles

论文作者

Dutta, Sanghamitra, Long, Jason, Mishra, Saumitra, Tilli, Cecilia, Magazzeni, Daniele

论文摘要

反事实解释为从机器学习模型中获得预期结果的方法提供了信息。但是,这种解释对于基础模型的某些现实世界变化(例如,重新训练模型,更改的超参数等)并不强大,质疑它们在几种应用程序中的可靠性,例如信用贷款。在这项工作中,我们提出了一种新型策略 - 我们称之为Robx-为基于树的合奏(例如XGBoost)生成可靠的反事实。基于树的合奏在鲁棒的反事实生成中提出了其他挑战,例如,它们具有非平滑和非差异的目标函数,并且在非常相似的数据上,它们可以在RETOR下的参数空间中进行很多更改。我们首先引入了一种新颖的指标(我们称之为反事实稳定性),该指标试图量化对重新验证下的更改并具有理想的理论属性的鲁棒性。我们提出的策略ROBX可与任何反事实生成方法(基本方法)一起使用,并通过使用我们的度量反事实稳定性迭代地完善基本方法生成的反事实来搜索可靠的反事实。我们将ROBX的性能与基于基准数据集的流行反事实生成方法(对于基于树的合奏)进行了比较。结果表明,我们的策略产生的反事实是明显更健壮的(实际模型更改后的有效性近100%),并且在现有的最新方法上也是现实的(就局部异常因素而言)。

Counterfactual explanations inform ways to achieve a desired outcome from a machine learning model. However, such explanations are not robust to certain real-world changes in the underlying model (e.g., retraining the model, changing hyperparameters, etc.), questioning their reliability in several applications, e.g., credit lending. In this work, we propose a novel strategy -- that we call RobX -- to generate robust counterfactuals for tree-based ensembles, e.g., XGBoost. Tree-based ensembles pose additional challenges in robust counterfactual generation, e.g., they have a non-smooth and non-differentiable objective function, and they can change a lot in the parameter space under retraining on very similar data. We first introduce a novel metric -- that we call Counterfactual Stability -- that attempts to quantify how robust a counterfactual is going to be to model changes under retraining, and comes with desirable theoretical properties. Our proposed strategy RobX works with any counterfactual generation method (base method) and searches for robust counterfactuals by iteratively refining the counterfactual generated by the base method using our metric Counterfactual Stability. We compare the performance of RobX with popular counterfactual generation methods (for tree-based ensembles) across benchmark datasets. The results demonstrate that our strategy generates counterfactuals that are significantly more robust (nearly 100% validity after actual model changes) and also realistic (in terms of local outlier factor) over existing state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源