论文标题
使用显着图来解释最终用户的低质量心电图
Towards the Use of Saliency Maps for Explaining Low-Quality Electrocardiograms to End Users
论文作者
论文摘要
当使用临床医生或人工智能(AI)系统的医学图像进行诊断时,重要的是图像具有高质量。当图像质量低时,产生图像的体检通常需要重做。在远程医疗中,一个普遍的问题是,只有在患者离开诊所后才标记质量问题,这意味着他们必须返回才能重做考试。对于居住在偏远地区的人们来说,这可能是特别困难的,他们在巴西的数字医疗组织Portemedicina占很大一部分的患者。在本文中,我们报告了有关(i)实时标记和解释低质量医学图像的AI系统的正在进行的工作,(ii)一项访谈研究,以了解使用我们Company的AI系统的利益相关者的解释需求,以及(III)纵向用户研究设计,以研究对我们的临床范围临床的效果,以研究我们的临床范围,我们的临床是我们的技术范围。据我们所知,这将是评估XAI方法对最终用户的影响的首次纵向研究 - 使用AI系统但没有特定于AI的专业知识的利益相关者。我们欢迎对我们的实验设置的反馈和建议。
When using medical images for diagnosis, either by clinicians or artificial intelligence (AI) systems, it is important that the images are of high quality. When an image is of low quality, the medical exam that produced the image often needs to be redone. In telemedicine, a common problem is that the quality issue is only flagged once the patient has left the clinic, meaning they must return in order to have the exam redone. This can be especially difficult for people living in remote regions, who make up a substantial portion of the patients at Portal Telemedicina, a digital healthcare organization based in Brazil. In this paper, we report on ongoing work regarding (i) the development of an AI system for flagging and explaining low-quality medical images in real-time, (ii) an interview study to understand the explanation needs of stakeholders using the AI system at OurCompany, and, (iii) a longitudinal user study design to examine the effect of including explanations on the workflow of the technicians in our clinics. To the best of our knowledge, this would be the first longitudinal study on evaluating the effects of XAI methods on end-users -- stakeholders that use AI systems but do not have AI-specific expertise. We welcome feedback and suggestions on our experimental setup.