论文标题
vi-slam2tag:低劳品标签的基于指纹的室内定位的数据集收集
VI-SLAM2tag: Low-Effort Labeled Dataset Collection for Fingerprinting-Based Indoor Localization
论文作者
论文摘要
基于指纹的方法特别适合为具有最低基础设施成本的行人部署室内定位系统。但是,该方法的准确性很大程度上取决于在校准阶段收集的指纹质量的质量,这是一个以静态方式手动完成时乏味的过程。我们提出了VI-SLAM2TAG,这是一种使用Arcore的视觉惯性同时定位和映射(VI-SLAM)模块的动态收集指纹自动标记的系统。 Arcore偶尔更新其内部坐标系。通过单个变换将整个轨迹映射到目标坐标系,从而导致较大的漂移效应。为了解决这个问题,我们提出了一种确定局部最佳子三射转换的策略。使用大地追踪系统评估我们的系统在生成的位置标签的准确性方面进行了评估。对于长达15分钟的轨迹,我们达到了大约50 cm的平均标记误差,这足以实现基于指纹的定位。我们通过收集包括WLAN和IMU数据在内的多层数据集来证明这一点,并展示如何用于训练基于神经网络的模型,以达到大约2 m的定位精度。 VI-SLAM2TAG和数据集可公开使用。
Fingerprinting-based approaches are particularly suitable for deploying indoor positioning systems for pedestrians with minimal infrastructure costs. The accuracy of the method, however, strongly depends on the quality of collected labeled fingerprints within the calibration phase, which is a tedious process when done manually in a static fashion. We present VI-SLAM2tag, a system for auto-labeling of dynamically collected fingerprints using the visual-inertial simultaneous localization and mapping (VI-SLAM) module of ARCore. ARCore occasionally updates its internal coordinate system. Mapping the entire trajectory to a target coordinate system via a single transformation thus results in large drift effects. To solve this, we propose a strategy for determining locally optimal sub-trajectory transformations. Our system is evaluated with respect to the accuracy of the generated position labels using a geodetic tracking system. We achieve an average labeling error of roughly 50 cm for trajectories of up to 15 minutes, which is sufficient for fingerprinting-based localization. We demonstrate this by collecting a multi-floor dataset including WLAN and IMU data and show how it can be used to train neural network based models that achieve a positioning accuracy of roughly 2 m. VI-SLAM2tag and the dataset are made publicly available.