论文标题

非线性鹰派工艺的平均场限制对Erdős-rényi-graph的抑制作用

Mean-field limits for non-linear Hawkes processes with inhibition on a Erdős-Rényi-graph

论文作者

Stiefel, Jakob

论文摘要

我们在$ q $-erdős-rényi-Graph上使用$ n $ nodes研究了多元的非线性鹰队流程$ z^n $。每个顶点是兴奋性(概率$ p $)或抑制性(概率$ 1-P $)。如果$ p \ neq \ tfrac12 $,我们采用$ z^n $的平均场限制,从而导致多元点过程$ \ bar z $。我们将交互强度缩减为$ n $,发现极限强度过程求解了确定性卷积方程,并且$ \ bar z $的所有组件都是独立的。平均场限制周围的波动会收敛到随机卷积方程的解。在关键情况下,$ p = \ tfrac12 $,我们通过$ n^{1/2} $恢复并讨论启发式上和数字上的困难。

We study a multivariate, non-linear Hawkes process $Z^N$ on a $q$-Erdős-Rényi-graph with $N$ nodes. Each vertex is either excitatory (probability $p$) or inhibitory (probability $1-p$). If $p\neq\tfrac12$, we take the mean-field limit of $Z^N$, leading to a multivariate point process $\bar Z$. We rescale the interaction intensity by $N$ and find that the limit intensity process solves a deterministic convolution equation and all components of $\bar Z$ are independent. The fluctuations around the mean field limit converge to the solution of a stochastic convolution equation. In the critical case, $p=\tfrac12$, we rescale by $N^{1/2}$ and discuss difficulties, both heuristically and numerically.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源