论文标题
各向异性calderón问题在具有可逆射线变换的歧管上很大的固定频率
The anisotropic Calderón problem at large fixed frequency on manifolds with invertible ray transform
论文作者
论文摘要
我们认为,在某些riemannian歧管上以较大的固定频率以较大的固定频率回收电位的逆问题。我们扩展了[G。的早期结果。 Uhlmann和Y. Wang,Arxiv:2104.03477]到一个简单的歧管的情况下,更普遍地传达了地球射线变换稳定可逆的歧管。该论点涉及一个不变的高斯光束准植物的构造,对于基础常数均匀。
We consider the inverse problem of recovering a potential from the Dirichlet to Neumann map at a large fixed frequency on certain Riemannian manifolds. We extend the earlier result of [G. Uhlmann and Y. Wang, arXiv:2104.03477] to the case of simple manifolds, and more generally to manifolds where the geodesic ray transform is stably invertible. The argument involves an invariantly formulated construction of Gaussian beam quasimodes with uniform bounds for the underlying constants.