论文标题

标准和低剂量PET-CT成像中基于深度学习的部分体积校正

Deep Learning-Based Partial Volume Correction in Standard and Low-Dose PET-CT Imaging

论文作者

Azimi, Mohammad-Saber, Kamali-Asl, Alireza, Ay, Mohammad-Reza, Zeraatkar, Navid, Arabi, Hossein

论文摘要

必须将标准剂量的放射性示踪剂交付到患者体内,以获得高质量的正电子发射断层扫描(PET)图像,以诊断出来,这增加了辐射损害的风险。另一方面,减少的示踪剂剂量会导致图像质量差和PET成像中噪声引起的定量偏差。部分体积效应(PVE)是PET固有有限空间分辨率的结果,是PET成像中质量和数量降解的另一种来源。由于内部器官的动作,患者的非自愿运动以及在解剖学和功能图像中结构的外观和大小差异,解剖学校正(PVC)的解剖学信息(PVC)的利用并不直接。此外,对于解剖信息,还需要一个额外的MR成像会话,这可能是不可用的。我们着手建立一个基于学习的框架,以预测标准或低剂量或低剂量或低剂量(LD)PET图像的部分校正的全剂量(FD-PVC)图片,而无需任何解剖学数据以提供PVC的关节解决方案并降低低剂量PET图像。

A standard dose of radioactive tracer must be delivered into the patients body to obtain high-quality Positron Emission Tomography (PET) images for diagnostic purposes, which raises the risk of radiation harm. A reduced tracer dose, on the other hand, results in poor image quality and a noise-induced quantitative bias in PET imaging. The partial volume effect (PVE), which is the result of PET intrinsic limited spatial resolution, is another source of quality and quantity degradation in PET imaging. The utilization of anatomical information for PVE correction (PVC) is not straightforward due to the internal organ motions, patient involuntary motions, and discrepancies in the appearance and size of the structures in anatomical and functional images. Furthermore, an additional MR imaging session is necessary for anatomical information, which may not be available. We set out to build a deep learning-based framework for predicting partial volume corrected full-dose (FD-PVC) pictures from either standard or low-dose (LD) PET images without requiring any anatomical data in order to provide a joint solution for PVC and denoise low-dose PET images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源