论文标题
变压器是适应性的任务计划者
Transformers are Adaptable Task Planners
论文作者
论文摘要
每个房屋都不同,每个人都喜欢以特殊方式完成的事情。因此,未来的家庭机器人需要既需要理由就日常任务的顺序性质,又要推广到用户的偏好。为此,我们提出了一个变压器任务计划者(TTP),该计划通过利用基于对象属性的表示来从演示中学习高级动作。 TTP可以在多个偏好上进行预训练,并在模拟洗碗机加载任务中使用单个演示作为提示显示概括以看不见的偏好。此外,我们使用TTP和Franka Panda机器人臂展示了现实世界中的重排,并使用单一的人类示范引起了这种重新安排。
Every home is different, and every person likes things done in their particular way. Therefore, home robots of the future need to both reason about the sequential nature of day-to-day tasks and generalize to user's preferences. To this end, we propose a Transformer Task Planner(TTP) that learns high-level actions from demonstrations by leveraging object attribute-based representations. TTP can be pre-trained on multiple preferences and shows generalization to unseen preferences using a single demonstration as a prompt in a simulated dishwasher loading task. Further, we demonstrate real-world dish rearrangement using TTP with a Franka Panda robotic arm, prompted using a single human demonstration.