论文标题
关于特殊序列的Primes,并应用于Carmichael编号
On primes in special sequences with applications to Carmichael numbers
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
By involving some exponential sums related to $Λ(n)$ in arithmetic progression, we can obtain some new results for von Mangoldt function over {\bf nonhomogeneous} Beatty sequences in arithmetic progressions, which improve some recent results of Banks-Yeager unconditionally. On the other hand, we also considered the primes over Piatetski-Shapiro sequences in arithmetic progressions, which gives a continuous improvement of the results of \cite{BBB}. These results can be used to improve some results related to the Carmichael numbers.