论文标题
部分可观测时空混沌系统的无模型预测
Ionization rate and plasma dynamics at 3.9 micron femtosecond photoionization of air
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The introduction of mid-IR optical parametric chirped pulse amplifiers (OPCPAs) has catalyzed interest in multi-millijoule, infrared femtosecond pulse-based filamentation. As tunneling ionization is a fundamental first stage in these high-intensity laser-matter interactions, characterizing the process is critical to understand derivative topical studies on femtosecond filamentation and self-focusing. Here, we report constructive-elastic microwave scattering-based measurements of total electron count, electron number densities, and photoionization rates generated by 3.9 micron femtosecond mid-infrared tunneling ionization of atmospheric air. Consequently, we determine photoionization rates in the range of 5.0x10$^{8}$-6.1x10$^{9}$ s$^{-1}$ for radiation intensities 1.3x10$^{13}$-1.9x10$^{14}$ W/cm$^{2}$, respectively. The proposed approach paves the wave to precisely tabulate photoionization rates in mid-IR for broad range of intensities and gas types and to study plasma dynamics at mid-IR filamentation.