论文标题
$λ$ -INCINCINCTAINT在模块化Galois代表家族的稳定性
$λ$-invariant stability in families of modular Galois representations
论文作者
论文摘要
考虑一个模块化形式的重量2家族,所有它们的残留$ \ pmod {p} $ galois表示都是同构的。众所周知,他们相应的硫磺$λ$ -Invariants可能会有所不同。在本文中,我们从定量的角度研究了这种变化,以这些$λ$ - invariants生长或保持稳定的频率提供了下限。
Consider a family of modular forms of weight 2, all of whose residual $\pmod{p}$ Galois representations are isomorphic. It is well-known that their corresponding Iwasawa $λ$-invariants may vary. In this paper, we study this variation from a quantitative perspective, providing lower bounds on the frequency with which these $λ$-invariants grow or remain stable.