论文标题

OpenLDN:学习为开放世界半监督学习发现新颖的课程

OpenLDN: Learning to Discover Novel Classes for Open-World Semi-Supervised Learning

论文作者

Rizve, Mamshad Nayeem, Kardan, Navid, Khan, Salman, Khan, Fahad Shahbaz, Shah, Mubarak

论文摘要

半监督学习(SSL)是解决监督学习的注释瓶颈的主要方法之一。最近的SSL方法可以有效利用大量未标记数据的存储库来提高性能,同时依靠一小部分标记数据。在大多数SSL方法中,一个常见的假设是标记和未标记的数据来自相同的数据分布。但是,在许多实际情况下,情况并非如此,这限制了其适用性。相反,在这项工作中,我们试图解决并非这样一个假设的具有挑战性的开放世界SSL问题。在开放世界的SSL问题中,目的是识别已知类别的样本,并同时检测和群集样本,这些样本属于未标记数据中的新型类别。这项工作介绍了使用成对相似性损失的OpenLDN来发现新颖的课程。使用双级优化规则,此成对相似性损失利用了标记的设置中可用的信息,以隐式聚类新的类样本,同时识别来自已知类别的样本。在发现新颖的类别后,OpenLDN将Open-World SSL问题转换为标准SSL问题,以使用现有的SSL方法实现额外的性能提高。我们的广泛实验表明,OpenLDN在多个流行的分类基准上胜过当前的最新方法,同时提供了更好的准确性/训练时间权衡。

Semi-supervised learning (SSL) is one of the dominant approaches to address the annotation bottleneck of supervised learning. Recent SSL methods can effectively leverage a large repository of unlabeled data to improve performance while relying on a small set of labeled data. One common assumption in most SSL methods is that the labeled and unlabeled data are from the same data distribution. However, this is hardly the case in many real-world scenarios, which limits their applicability. In this work, instead, we attempt to solve the challenging open-world SSL problem that does not make such an assumption. In the open-world SSL problem, the objective is to recognize samples of known classes, and simultaneously detect and cluster samples belonging to novel classes present in unlabeled data. This work introduces OpenLDN that utilizes a pairwise similarity loss to discover novel classes. Using a bi-level optimization rule this pairwise similarity loss exploits the information available in the labeled set to implicitly cluster novel class samples, while simultaneously recognizing samples from known classes. After discovering novel classes, OpenLDN transforms the open-world SSL problem into a standard SSL problem to achieve additional performance gains using existing SSL methods. Our extensive experiments demonstrate that OpenLDN outperforms the current state-of-the-art methods on multiple popular classification benchmarks while providing a better accuracy/training time trade-off.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源