论文标题

标准模型估计$ k^+\toπ^+4e $分支比率

Standard Model estimate of $K^+\toπ^+4e$ branching ratio

论文作者

Husek, Tomáš

论文摘要

$ k^+\toπ^+e^+e^-e^+e^ - $($ k^+\toπ^+4e $)的分支比率是在标准模型中以领先顺序计算的。中性杆极的优势确定总体分支比为$ b(k^+\toπ^+4e)= b(k^+\toπ^+π^0)b(π^0 \ to4e)\ oft7.0(3)\ times10^{ - 6} $。这种贡献的重要性非常集中在整个可用相位空间的背景下,在大多数范围内,单次交换拓扑又依然普遍存在。因此,仅在允许运动区域的一部分中表现出分支比率很有趣。我们发现,例如,$ b(k^+\toπ^+4e,\,m_ {4e}> 150 \,\ text {mev})= 6.0(6)\ times10^{ - 11} $。

The branching ratio of the $K^+\toπ^+e^+e^-e^+e^-$ ($K^+\toπ^+4e$) decay is calculated at leading order in the Standard Model. The dominance of the neutral-pion pole determines the overall branching ratio to be $B(K^+\toπ^+4e)=B(K^+\toπ^+π^0)B(π^0\to4e)\approx7.0(3)\times10^{-6}$. The significance of this contribution is very much concentrated in the context of the whole available phase space, throughout most of which the one-photon-exchange topology is prevalent in turn. It is thus interesting to present branching ratios for only parts of the allowed kinematical region. We find, for instance, $B(K^+\toπ^+4e,\,m_{4e}>150\,\text{MeV})=6.0(6)\times10^{-11}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源