论文标题
通过转移学习来解决数据稀缺:钙钛矿薄膜光谱的厚度表征的案例研究
Tackling Data Scarcity with Transfer Learning: A Case Study of Thickness Characterization from Optical Spectra of Perovskite Thin Films
论文作者
论文摘要
转移学习越来越多地成为处理机器学习中经常遇到的数据稀缺性的重要工具。在应用高通量厚度作为具有自主工作流的光电薄膜的高通量优化的下游过程中,数据稀缺尤其是针对新材料的。为了实现高通量厚度表征,我们提出了一个称为“厚度”的机器学习模型,该模型可预测UV-VIS分光光度计输入和总体传输学习工作流程的厚度。我们证明了从通用带媒体材料的通用源域转移到钙钛矿材料的特定目标结构域的转移工作流程,其中目标域数据仅来自文献中有限数量(18)的折射率(18)。具有一些文献数据可以轻松地将目标域扩展到其他材料类。将厚度预测精度定义为10%偏差之内,厚度ML的转移学习精度为92.2%(偏差为3.6%),而转移学习的精度为81.8%(偏差为3.6%)11.7%,没有(较低的平均值和较大的标准偏差)。对六个沉积的钙钛矿膜进行的实验验证也通过产生10.5%的平均绝对百分比误差(MAPE)来证实所提出的工作流程的功效。
Transfer learning increasingly becomes an important tool in handling data scarcity often encountered in machine learning. In the application of high-throughput thickness as a downstream process of the high-throughput optimization of optoelectronic thin films with autonomous workflows, data scarcity occurs especially for new materials. To achieve high-throughput thickness characterization, we propose a machine learning model called thicknessML that predicts thickness from UV-Vis spectrophotometry input and an overarching transfer learning workflow. We demonstrate the transfer learning workflow from generic source domain of generic band-gapped materials to specific target domain of perovskite materials, where the target domain data only come from limited number (18) of refractive indices from literature. The target domain can be easily extended to other material classes with a few literature data. Defining thickness prediction accuracy to be within-10% deviation, thicknessML achieves 92.2% (with a deviation of 3.6%) accuracy with transfer learning compared to 81.8% (with a deviation of 3.6%) 11.7% without (lower mean and larger standard deviation). Experimental validation on six deposited perovskite films also corroborates the efficacy of the proposed workflow by yielding a 10.5% mean absolute percentage error (MAPE).