论文标题

平均程度较大的小子图

Small subgraphs with large average degree

论文作者

Janzer, Oliver, Sudakov, Benny, Tomon, István

论文摘要

在本文中,我们研究了在给定图中找到小密集子图的基本问题。对于实际数字$ s> 2 $,我们证明,$ n $顶点上的每个图表至少$ d $都包含一个平均度的子图,至少包含$ nd^{ - \ frac { - \ frac {s} {s-2}} {s-2}}}}}}(\ log d)^{\ d)这是最佳的,直到多毛体因子,并解决了Feige和Wagner的猜想。此外,我们还表明,每个图表具有$ n $顶点和平均程度至少$ n^{1- \ frac {2} {s}+\ varepsilon} $包含平均水平的子图,至少$ s $ on $ _ {\ o _ {\ varepsilon,s}(s}(1)$ vertices $ o o o o _ o _ {\ varepsilon,s $ vertices $ not ocation and o o o o o o o o o o o o o o o o o o(o o(猜想的Verstraëte。

In this paper we study the fundamental problem of finding small dense subgraphs in a given graph. For a real number $s>2$, we prove that every graph on $n$ vertices with average degree at least $d$ contains a subgraph of average degree at least $s$ on at most $nd^{-\frac{s}{s-2}}(\log d)^{O_s(1)}$ vertices. This is optimal up to the polylogarithmic factor, and resolves a conjecture of Feige and Wagner. In addition, we show that every graph with $n$ vertices and average degree at least $n^{1-\frac{2}{s}+\varepsilon}$ contains a subgraph of average degree at least $s$ on $O_{\varepsilon,s}(1)$ vertices, which is also optimal up to the constant hidden in the $O(.)$ notation, and resolves a conjecture of Verstraëte.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源