论文标题

通过邻里不变性预测跨域的概括

Predicting Out-of-Domain Generalization with Neighborhood Invariance

论文作者

Ng, Nathan, Hulkund, Neha, Cho, Kyunghyun, Ghassemi, Marzyeh

论文摘要

安全开发和部署机器学习模型取决于表征和比较其能力概括为新环境的能力。尽管最近的工作提出了各种可以直接预测或理论上绑定模型的概括能力的方法,但它们依赖于强大的假设,例如匹配的火车/测试分布以及对模型梯度的访问。为了在不满足这些假设时表征概括,我们提出了邻里不变性,这是分类器在局部变换邻里的输出不变性的度量。具体而言,我们采样了一组转换并给出了输入测试点,将不变性计算为分类为同一类的变换点的最大分数。至关重要的是,我们的度量很容易计算,不取决于测试点的真实标签,对数据分布或模型没有任何假设,并且即使在现有方法无法使用的情况下(OOD)设置也可以应用,仅需要选择一组适当的数据转换。在图像分类,情感分析和自然语言推论中的鲁棒性基准的实验中,我们在邻里不变性度量与对超过100多个独特的火车/测试域对评估的4,600多个模型上的实际不变性度量与实际的OOD概括之间存在很强的相关性。

Developing and deploying machine learning models safely depends on the ability to characterize and compare their abilities to generalize to new environments. Although recent work has proposed a variety of methods that can directly predict or theoretically bound the generalization capacity of a model, they rely on strong assumptions such as matching train/test distributions and access to model gradients. In order to characterize generalization when these assumptions are not satisfied, we propose neighborhood invariance, a measure of a classifier's output invariance in a local transformation neighborhood. Specifically, we sample a set of transformations and given an input test point, calculate the invariance as the largest fraction of transformed points classified into the same class. Crucially, our measure is simple to calculate, does not depend on the test point's true label, makes no assumptions about the data distribution or model, and can be applied even in out-of-domain (OOD) settings where existing methods cannot, requiring only selecting a set of appropriate data transformations. In experiments on robustness benchmarks in image classification, sentiment analysis, and natural language inference, we demonstrate a strong and robust correlation between our neighborhood invariance measure and actual OOD generalization on over 4,600 models evaluated on over 100 unique train/test domain pairs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源