论文标题
(CO)伴奏品种的超平面部分的同时学
Cohomology of hyperplane sections of (co)adjoint varieties
论文作者
论文摘要
在本文中,我们研究了伴随和共同连接品种的一般超平面部分。我们表明,这些是均匀品种的唯一部分,因此,环境品种的自动形态群的最大圆环可以稳定它们。然后,我们研究它们的几何形状,以舒伯特的类别为其经典的共同学环提供了公式,并计算了量子Chevalley公式。这使我们能够获得有关(小)量子共同体的半简化性的结果,类似于(CO)伴随品种的量子。
In this paper we study general hyperplane sections of adjoint and coadjoint varieties. We show that these are the only sections of homogeneous varieties such that a maximal torus of the automorphism group of the ambient variety stabilizes them. We then study their geometry, provide formulas for their classical cohomology rings in terms of Schubert classes and compute the quantum Chevalley formula. This allows us to obtain results about the semi-simplicity of the (small) quantum cohomology, analogous to those holding for (co)adjoint varieties.