论文标题
关于在任何循环订单中的一般流层中标量的有效动作
On the effective action for scalars in a general manifold to any loop order
论文作者
论文摘要
使用功能方法和衍生化扩展来制定一个程序,以对任何循环顺序计算有效的动作,以参数为任意的riemannian歧管的标量字段,同时保持显式场空间协方差。在此过程中,提出了LSZ还原公式的几何概括。这些结果用于表征有效的野外理论,用于电动对称性破坏,并在一个环上扩展了田间空间的几何透视。
Functional methods and a derivative expansion are employed for laying out a procedure to compute the effective action to any loop order, for scalar fields parametrising an arbitrary Riemannian manifold, while maintaining explicit field-space covariance. In this process, the geometric generalization of the LSZ reduction formula is presented. These results are of use in the characterization of effective field theories for electroweak symmetry breaking and extend a geometric perspective in field space beyond one loop.