论文标题

块-SCL:封锁事项,用于监督产品匹配中的对比度学习

Block-SCL: Blocking Matters for Supervised Contrastive Learning in Product Matching

论文作者

Almagro, Mario, Jiménez, David, Ortego, Diego, Almazán, Emilio, Martínez, Eva

论文摘要

产品匹配是全球对电子商务消费者行为的理解的基本步骤。实际上,产品匹配是指确定来自不同数据源(例如零售商)是否提供两个产品的任务。标准管道使用以前的阶段,称为阻止,其中给定产品提供了一组潜在的匹配候选者,以相似的特征(例如相同的品牌,类别,风味等)检索。从这些类似的候选产品中,那些不是匹配的产品可以被视为艰苦的负面因素。我们提出了Block-SCL,该策略使用阻止输出来充分利用监督的对比度学习(SCL)。具体而言,块-SCL使用在阻塞阶段获得的硬性样本来建立丰富的批处理。这些批次提供了一个强大的训练信号,导致该模型了解产品匹配的更有意义的句子嵌入。几个公共数据集中的实验结果表明,尽管仅将短产品标题作为输入,没有数据增强和更轻的变压器骨干而不是竞争方法,但Block-SCL仍取得了最新的结果。

Product matching is a fundamental step for the global understanding of consumer behavior in e-commerce. In practice, product matching refers to the task of deciding if two product offers from different data sources (e.g. retailers) represent the same product. Standard pipelines use a previous stage called blocking, where for a given product offer a set of potential matching candidates are retrieved based on similar characteristics (e.g. same brand, category, flavor, etc.). From these similar product candidates, those that are not a match can be considered hard negatives. We present Block-SCL, a strategy that uses the blocking output to make the most of Supervised Contrastive Learning (SCL). Concretely, Block-SCL builds enriched batches using the hard-negatives samples obtained in the blocking stage. These batches provide a strong training signal leading the model to learn more meaningful sentence embeddings for product matching. Experimental results in several public datasets demonstrate that Block-SCL achieves state-of-the-art results despite only using short product titles as input, no data augmentation, and a lighter transformer backbone than competing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源