论文标题

基于事件的采样ECG形态通过自相似性重建

Event-based sampled ECG morphology reconstruction through self-similarity

论文作者

Zanoli, Silvio, Teijeiro, Tomas, Ansaloni, Giovanni, Atienza, David

论文摘要

背景和目标:基于事件的类似物到数字转换器允许稀疏的生物信号采集,从而实现了局部亚nyquist采样频率。但是,积极的事件选择可能会导致重要的生物标志物的丧失,而使用标准插值技术无法回收。在这项工作中,我们利用心电图(ECG)信号的自相似性在基于事件的采样的ECG信号中恢复缺失的特征,并动态选择患者代表性的模板以及一种新型的动态时间翘曲算法来推断基于事件采样的心跳的形态。 方法:我们获得了一组均匀抽样的心跳,并使用基于图的聚类算法来定义患者的代表模板。然后,对于每个基于事件的采样心跳,我们选择了形态学上最近的模板,然后根据一种与模板段相匹配的事件与模板段相匹配的新型动态时间扭曲算法,并根据所选模板的零件线性变形重建心跳。 结果:对标准的正常窦性节律数据集进行的合成测试,该数据集由约180万个正常心跳组成,在标准重新采样技术方面表现出色。特别是(与经典的线性重采样相比),我们显示出多达10次的P波检测的改善,T波检测的提高最多3次,并且动态时间扭曲的形态距离有30 \%的改善。 结论:在这项工作中,我们开发了一种基于事件的处理管道,该管道利用信号自相似性来重建基于事件的采样的ECG信号。合成测试表明,与经典的重采样技术相比具有明显的优势。

Background and Objective: Event-based analog-to-digital converters allow for sparse bio-signal acquisition, enabling local sub-Nyquist sampling frequency. However, aggressive event selection can cause the loss of important bio-markers, not recoverable with standard interpolation techniques. In this work, we leverage the self-similarity of the electrocardiogram (ECG) signal to recover missing features in event-based sampled ECG signals, dynamically selecting patient-representative templates together with a novel dynamic time warping algorithm to infer the morphology of event-based sampled heartbeats. Methods: We acquire a set of uniformly sampled heartbeats and use a graph-based clustering algorithm to define representative templates for the patient. Then, for each event-based sampled heartbeat, we select the morphologically nearest template, and we then reconstruct the heartbeat with piece-wise linear deformations of the selected template, according to a novel dynamic time warping algorithm that matches events to template segments. Results: Synthetic tests on a standard normal sinus rhythm dataset, composed of approximately 1.8 million normal heartbeats, show a big leap in performance with respect to standard resampling techniques. In particular (when compared to classic linear resampling), we show an improvement in P-wave detection of up to 10 times, an improvement in T-wave detection of up to three times, and a 30\% improvement in the dynamic time warping morphological distance. Conclusion: In this work, we have developed an event-based processing pipeline that leverages signal self-similarity to reconstruct event-based sampled ECG signals. Synthetic tests show clear advantages over classical resampling techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源