论文标题

ORF-net:深度全面监管的肋骨骨折从胸部CT扫描中检测

ORF-Net: Deep Omni-supervised Rib Fracture Detection from Chest CT Scans

论文作者

Chai, Zhizhong, Lin, Huangjing, Luo, Luyang, Heng, Pheng-Ann, Chen, Hao

论文摘要

大多数现有的对象检测工作都基于边界框注释:每个对象都有一个精确的注释框。但是,对于肋骨骨折,边界盒注释非常耗时且耗时,因为放射线医生需要以切片为基础调查和注释肋骨骨折。尽管一些研究提出了弱监督的方法或半监督方法,但他们不能同时处理不同形式的监督。在本文中,我们提出了一个新型的Omni监督对象检测网络,该网络可以利用多种不同形式的注释数据以进一步改善检测性能。具体而言,所提出的网络包含一个Omni监督的检测头,其中每种形式的注释数据都对应于唯一的分类分支。此外,我们为不同注释的数据形式提出了动态标签分配策略,以促进每个分支的更好学习。此外,我们还设计了一种信心的分类损失,以高度信心强调样本并进一步改善模型的性能。在测试数据集上进行的广泛实验表明,我们所提出的方法始终超过其他最先进的方法,这证明了深度全能的学习对改善肋骨断裂检测性能的功效。

Most of the existing object detection works are based on the bounding box annotation: each object has a precise annotated box. However, for rib fractures, the bounding box annotation is very labor-intensive and time-consuming because radiologists need to investigate and annotate the rib fractures on a slice-by-slice basis. Although a few studies have proposed weakly-supervised methods or semi-supervised methods, they could not handle different forms of supervision simultaneously. In this paper, we proposed a novel omni-supervised object detection network, which can exploit multiple different forms of annotated data to further improve the detection performance. Specifically, the proposed network contains an omni-supervised detection head, in which each form of annotation data corresponds to a unique classification branch. Furthermore, we proposed a dynamic label assignment strategy for different annotated forms of data to facilitate better learning for each branch. Moreover, we also design a confidence-aware classification loss to emphasize the samples with high confidence and further improve the model's performance. Extensive experiments conducted on the testing dataset show our proposed method outperforms other state-of-the-art approaches consistently, demonstrating the efficacy of deep omni-supervised learning on improving rib fracture detection performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源