论文标题
极端图,用于两分图的奇数
Extremal graphs for odd-ballooning of bipartite graphs
论文作者
论文摘要
鉴于图$ h $和一个奇数整数$ t $($ t \ geq 3 $),$ h $的奇数票是$ h(t)$表示的奇数,这是从$ h $ flate $ h $的每个边缘所获得的图表,至少$ t的奇数周期至少$ t $,而$ t $ the the New vertices of cycles of cycles of Cycles的新范围都是不同的。在本文中,我们确定了$ t \ geq 5 $时的奇数票量的Turán数字范围。作为应用,我们可以推断出Turán数字,以示出恒星,路径甚至周期的奇数。
Given a graph $H$ and an odd integer $t$ ($t\geq 3$), the odd-ballooning of $H$, denoted by $H(t)$, is the graph obtained from replacing each edge of $H$ by an odd cycle of length at least $t$ where the new vertices of the cycles are all distinct. In this paper, we determine the range of Turán numbers for odd-ballooning of bipartite graphs when $t\geq 5$. As applications, we may deduce the Turán numbers for odd-ballooning of stars, paths and even cycles.