论文标题

FDVTS的第二COV19D解决方案在COVID-19检测和严重性分析

FDVTS's Solution for 2nd COV19D Competition on COVID-19 Detection and Severity Analysis

论文作者

Hou, Junlin, Xu, Jilan, Feng, Rui, Zhang, Yuejie

论文摘要

本文介绍了我们针对第二届COVID-19比赛的解决方案,该竞赛是在欧洲计算机视觉会议(ECCV 2022)的Aimia研讨会框架内举行的。在我们的方法中,我们采用有效的3D对比度混合分类网络,用于在胸部CT图像上进行COVID-19诊断,该图像由对比度表示学习和混合分类组成。对于COVID-19检测挑战,我们的方法在484个验证CT扫描中达到0.9245宏F1得分,这显着优于基线方法的16.5%。在COVID-19的严重性检测挑战中,我们的方法在61个验证样本上达到了0.7186宏F1得分,这也超过了基线8.86%。

This paper presents our solution for the 2nd COVID-19 Competition, occurring in the framework of the AIMIA Workshop in the European Conference on Computer Vision (ECCV 2022). In our approach, we employ an effective 3D Contrastive Mixup Classification network for COVID-19 diagnosis on chest CT images, which is composed of contrastive representation learning and mixup classification. For the COVID-19 detection challenge, our approach reaches 0.9245 macro F1 score on 484 validation CT scans, which significantly outperforms the baseline method by 16.5%. In the COVID-19 severity detection challenge, our approach achieves 0.7186 macro F1 score on 61 validation samples, which also surpasses the baseline by 8.86%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源