论文标题
热弹性板系统的渐近轮廓的注释
A note on asymptotic profiles for the thermoelastic plate system
论文作者
论文摘要
我们研究了与牛顿冷却定律相关的热弹性板系统的库奇问题,在该定律中,研究了大型溶液的最佳生长($ n \ leqslant 4 $)或衰减($ n \ geqslant 5 $)的估计值($ n \ geqslant 5 $)。特别是,温度方程式中的额外低阶项会削弱垂直位移的衰减速率,并导致与经典热弹性板相比的新领先术语。
We investigate the Cauchy problem for the thermoelastic plate system associated with Newton's law of cooling, where optimal growth ($n\leqslant 4$) or decay ($n\geqslant 5$) estimates and asymptotic profiles of solutions for large-time are studied. Especially, the additional lower-order term in the temperature equation weakens decay rates of the vertical displacement, and leads to a new leading term comparing with the classical thermoelastic plates.