论文标题
注意力指导网络在光学遥感图像中进行显着对象检测
Attention Guided Network for Salient Object Detection in Optical Remote Sensing Images
论文作者
论文摘要
由于规模和形状的极端复杂性以及预测位置的不确定性,光学遥感图像(RSI-SOD)中的显着对象检测是一项非常困难的任务。现有的SOD方法可以满足自然场景图像的检测性能,但是由于遥感图像中上述图像特性,它们不能很好地适应RSI-SOD。在本文中,我们提出了一个新颖的注意力指导网络(AGNET),用于光学RSIS中的SOD,包括位置增强阶段和细节细节阶段。具体而言,位置增强阶段由语义注意模块和上下文注意模块组成,以准确描述显着对象的大致位置。细节完善阶段使用提出的自我注册模块在注意力的指导下逐步完善预测结果并逆转注意力。此外,混合损失用于监督网络的培训,这可以从像素,区域和统计数据的三个角度来提高模型的性能。对两个流行基准测试的广泛实验表明,与其他最先进的方法相比,AGNET可以达到竞争性能。该代码将在https://github.com/nuaayh/agnet上找到。
Due to the extreme complexity of scale and shape as well as the uncertainty of the predicted location, salient object detection in optical remote sensing images (RSI-SOD) is a very difficult task. The existing SOD methods can satisfy the detection performance for natural scene images, but they are not well adapted to RSI-SOD due to the above-mentioned image characteristics in remote sensing images. In this paper, we propose a novel Attention Guided Network (AGNet) for SOD in optical RSIs, including position enhancement stage and detail refinement stage. Specifically, the position enhancement stage consists of a semantic attention module and a contextual attention module to accurately describe the approximate location of salient objects. The detail refinement stage uses the proposed self-refinement module to progressively refine the predicted results under the guidance of attention and reverse attention. In addition, the hybrid loss is applied to supervise the training of the network, which can improve the performance of the model from three perspectives of pixel, region and statistics. Extensive experiments on two popular benchmarks demonstrate that AGNet achieves competitive performance compared to other state-of-the-art methods. The code will be available at https://github.com/NuaaYH/AGNet.