论文标题

访问控制中的机器学习:分类法和调查

Machine Learning in Access Control: A Taxonomy and Survey

论文作者

Nobi, Mohammad Nur, Gupta, Maanak, Praharaj, Lopamudra, Abdelsalam, Mahmoud, Krishnan, Ram, Sandhu, Ravi

论文摘要

越来越多的工作已经认识到利用机器学习(ML)进步的重要性,以满足提取访问控制属性,策略挖掘,策略验证,访问决策等有效自动化的需求。在这项工作中,我们调查和总结了各种ML方法来解决不同的访问控制问题。我们提出了ML模型在访问控制域中应用的新颖分类学。我们重点介绍当前的局限性和公开挑战,例如缺乏公共现实世界数据集,基于ML的访问控制系统的管理,了解黑盒ML模型的决定等,并列举未来的研究方向。

An increasing body of work has recognized the importance of exploiting machine learning (ML) advancements to address the need for efficient automation in extracting access control attributes, policy mining, policy verification, access decisions, etc. In this work, we survey and summarize various ML approaches to solve different access control problems. We propose a novel taxonomy of the ML model's application in the access control domain. We highlight current limitations and open challenges such as lack of public real-world datasets, administration of ML-based access control systems, understanding a black-box ML model's decision, etc., and enumerate future research directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源