论文标题
Bibasic Humbert超几何功能的某些新公式$ψ_{1} $和$ψ_{2} $
Certain new formulas for bibasic Humbert hypergeometric functions $Ψ_{1}$ and $Ψ_{2}$
论文作者
论文摘要
本工作的主要目的是给一些有趣的$ q $ - 各种$ q $ - 重点关系,$ q $ - recursion公式,$ q $ - Q $ - 各个衍生品关系,$ q $ - $ - 综合表示,转换和汇总公式,用于Bibasic Humbert Humbert Humbert Humbert Humbert Humbert Humbert Hyperemetric undere $ qun_ $ Q $ Q $ Q $ Q $ Q $ Q and $ Q ar和Q。通过使用$ q $ -calculus的概念,两个变量和一些开发公式的$ p $被认为是新的。最后,当两个独立的基础$ q $和$ p $相等时,建立了与Bibasic Humbert超测量系列相关的一些有趣的特殊情况和直接身份。
The main aim of the present work is to give some interesting the $q$-analogues of various $q$-recurrence relations, $q$-recursion formulas, $q$-partial derivative relations, $q$-integral representations, transformation and summation formulas for bibasic Humbert hypergeometric functions $Ψ_{1}$ and $Ψ_{2}$ on two independent bases $q$ and $p$ of two variables and some developments formulae, believed to be new, by using the conception of $q$-calculus. Finally, some interesting special cases and straightforward identities connected with bibasic Humbert hypergeometric series of the types $Ψ_{1}$ and $Ψ_{2}$ are established when the two independent bases $q$ and $p$ are equal.