论文标题
fMRI连接性的可解释的融合分析框架:自我注意机制和潜在空间项目响应模型
Interpretable Fusion Analytics Framework for fMRI Connectivity: Self-Attention Mechanism and Latent Space Item-Response Model
论文作者
论文摘要
已经有几项尝试使用基于大脑fMRI信号的深度学习来对认知障碍疾病进行分类。但是,深度学习是一种隐藏的黑匣子模型,使得很难解释分类过程。为了解决这个问题,我们提出了一个新颖的分析框架,该框架解释了深度学习过程产生的分类。我们首先通过基于相似的信号模式嵌入功能来得出感兴趣的区域(ROI)功能连接网络(FCN)。然后,使用配备自我注意力的深度学习模型,我们根据其FCN对疾病进行分类。最后,为了解释分类结果,我们采用潜在的空间响应相互作用网络模型来识别与其他疾病相比表现出不同连接模式的重要功能。该提出的框架在四种类型的认知障碍中的应用表明,我们的方法对于确定重要的ROI功能有效。
There have been several attempts to use deep learning based on brain fMRI signals to classify cognitive impairment diseases. However, deep learning is a hidden black box model that makes it difficult to interpret the process of classification. To address this issue, we propose a novel analytical framework that interprets the classification result from deep learning processes. We first derive the region of interest (ROI) functional connectivity network (FCN) by embedding functions based on their similar signal patterns. Then, using the self-attention equipped deep learning model, we classify diseases based on their FCN. Finally, in order to interpret the classification results, we employ a latent space item-response interaction network model to identify the significant functions that exhibit distinct connectivity patterns when compared to other diseases. The application of this proposed framework to the four types of cognitive impairment shows that our approach is valid for determining the significant ROI functions.