论文标题

返回MLP:人类运动预测的简单基线

Back to MLP: A Simple Baseline for Human Motion Prediction

论文作者

Guo, Wen, Du, Yuming, Shen, Xi, Lepetit, Vincent, Alameda-Pineda, Xavier, Moreno-Noguer, Francesc

论文摘要

本文解决了人类运动预测的问题,包括预测未来的身体从历史上观察到的序列中构成的构成。最先进的方法可提供良好的结果,但是,它们依赖于任意复杂性的深度学习体系结构,例如经常性神经网络(RNN),变压器或图形卷积网络(GCN),通常需要多个培训阶段和超过200万参数。在本文中,我们表明,在使用一系列标准实践(例如应用离散的余弦变换(DCT))结合在一起之后,预测关节的残留位移并优化速度为辅助损失,基于多层perceptron(MLP)的轻量级网络只能以014亿个参数的速度来超越状态参数。对人类360万的详尽评估,Amass和3DPW数据集表明,我们的方法(名为Simlpe)始终优于所有其他方法。我们希望我们的简单方法可以成为社区的强大基准,并允许对人类运动预测问题进行重新思考。该代码可在\ url {https://github.com/dulucas/simlpe}上公开获得。

This paper tackles the problem of human motion prediction, consisting in forecasting future body poses from historically observed sequences. State-of-the-art approaches provide good results, however, they rely on deep learning architectures of arbitrary complexity, such as Recurrent Neural Networks(RNN), Transformers or Graph Convolutional Networks(GCN), typically requiring multiple training stages and more than 2 million parameters. In this paper, we show that, after combining with a series of standard practices, such as applying Discrete Cosine Transform(DCT), predicting residual displacement of joints and optimizing velocity as an auxiliary loss, a light-weight network based on multi-layer perceptrons(MLPs) with only 0.14 million parameters can surpass the state-of-the-art performance. An exhaustive evaluation on the Human3.6M, AMASS, and 3DPW datasets shows that our method, named siMLPe, consistently outperforms all other approaches. We hope that our simple method could serve as a strong baseline for the community and allow re-thinking of the human motion prediction problem. The code is publicly available at \url{https://github.com/dulucas/siMLPe}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源