论文标题

具有非本地初始条件的冲动分数动态方程在时间尺度上

Impulsive Fractional Dynamic Equation with Non-local Initial Condition on Time Scales

论文作者

Gogoi, Bikash, Hazarika, Bipan, Saha, Utpal Kumar

论文摘要

在本手稿中,我们研究了涉及非本地初始条件的时间尺度上的冲动分数动态方程的存在和唯一性,并在Caputo Nabla衍生物的帮助下。存在性基于Scheafer的固定点定理以及Arzela-Ascoli定理和Banach收缩定理。在时间尺度的背景下,还讨论了Caputo Nabla衍生物和分数顺序的Riemann-Liouvile Nabla衍生物的比较。

In this manuscript we investigate the existence and uniqueness of an impulsive fractional dynamic equation on time scales involving non-local initial condition with help of Caputo nabla derivative. The existency is based on the Scheafer's fixed point theorem along with the Arzela-Ascoli theorem and Banach contraction theorem. The comparison of the Caputo nabla derivative and Riemann-Liouvile nabla derivative of fractional order are also discussed in the context of time scale.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源