论文标题
基于人群的参与可以改善个性化吗?一个新颖的数据集和实验
Can Population-based Engagement Improve Personalisation? A Novel Dataset and Experiments
论文作者
论文摘要
这项工作探讨了基于人群的参与预测如何在大型学习资源收集中以大规模启动冷漠。本文介绍了I)VLE,这是一个新型数据集,它由内容和视频的功能组成,该功能从公开可用的科学视频讲座中提取,以及与学习者参与度相关的隐式和明确信号,ii)两个标准任务,与预测和排名上下文 - 敏锐的互动相关的视频中的视频互动与预先涉及的基本底座和III的标准互动相关,并提出了一个有效的实用性。我们的实验结果表明,新提出的VLE数据集导致构建上下文不合SNOSTIC参与预测模型,这些模型比以前的数据集明显具有性能,这主要归因于培训示例的增加。 VLE数据集在建立针对电子学习/ MOOC用例的计算机科学/人工智能教育方面的适用性也证明了。将建筑模型与个性化算法相结合的进一步实验在解决教育推荐人中遇到的冷启动问题方面有希望的改进。据我们所知,这是涉及学习者参与预测任务的最大,最多样化的公开数据集。数据集,辅助工具,描述性统计信息和示例代码片段可公开可用。
This work explores how population-based engagement prediction can address cold-start at scale in large learning resource collections. The paper introduces i) VLE, a novel dataset that consists of content and video based features extracted from publicly available scientific video lectures coupled with implicit and explicit signals related to learner engagement, ii) two standard tasks related to predicting and ranking context-agnostic engagement in video lectures with preliminary baselines and iii) a set of experiments that validate the usefulness of the proposed dataset. Our experimental results indicate that the newly proposed VLE dataset leads to building context-agnostic engagement prediction models that are significantly performant than ones based on previous datasets, mainly attributing to the increase of training examples. VLE dataset's suitability in building models towards Computer Science/ Artificial Intelligence education focused on e-learning/ MOOC use-cases is also evidenced. Further experiments in combining the built model with a personalising algorithm show promising improvements in addressing the cold-start problem encountered in educational recommenders. This is the largest and most diverse publicly available dataset to our knowledge that deals with learner engagement prediction tasks. The dataset, helper tools, descriptive statistics and example code snippets are available publicly.