论文标题

一些对称的金字塔,琐碎的dehn不变

Some Symmetric Pyramids with trivial Dehn invariant

论文作者

Duval, Guillaume

论文摘要

对于某些$ r^3 $的对称金字塔,我们发现galois的dehn不变性为零,即金字塔等于剪刀等同于立方体。这些条件是,数字字段的一些相关的Kummer扩展必须是Abelian。这项工作可以看作是[5]的补充。实际上,在[5]中,给出了所有理性四面体的分类,而我们将注意力集中在更对称的金字塔上,并证明唯一与立方体相等的剪刀是理性的。

For some symmetric pyramids of $R^3$ , we find Galois obstruction for their Dehn invariant to be zero, i.e. for the pyramids to be scissor equivalent to a cube. These conditions are that some associated Kummer extensions of number fields must be abelian. This work can be viewed as a complement to [5]. Indeed, in [5], a classification of all rational tetrahedra is given, while we concentrate our attention on much more symmetric pyramids and prove that the only ones which are scissor equivalent to a cube are the rational ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源