论文标题
迈向现实世界的视频DENADY:一个实用的视频来表示数据集和网络
Towards Real-World Video Denosing: A Practical Video Denosing Dataset and Network
论文作者
论文摘要
为了促进视频降解研究,我们构建了一个引人注目的数据集,即“实用的视频DeNoising DataSet”(PVDD),其中包含200个SRGB和RAW格式的200个嘈杂清洁的动态视频对。与由有限运动信息组成的现有数据集相比,PVDD涵盖了具有变化和自然运动的动态场景。与主要使用高斯或泊松分布的数据集不同,以综合SRGB域中的噪声,PVDD通过物理有意义的传感器噪声模型综合了来自原始域的现实噪声,然后是ISP处理。此外,我们还提出了一个新的视频Denoising框架,称为Recurrent Video Denoising Transformer(RVDT),该框架可以在PVDD和其他当前视频Denoisising Benchmarks上实现SOTA性能。 RVDT由空间和颞变压器块组成,以对空间维度进行远程操作以及对时间尺寸的长期传播进行deNo。尤其是,RVDT利用注意机制以隐式和明确的时间建模实施双向特征传播。广泛的实验表明,1)接受PVDD培训的模型比在其他现有数据集中训练的模型上实现了许多具有挑战性的现实世界视频的优越的deno绩效; 2)在同一数据集中训练有培训,我们提出的RVDT可以比其他类型的网络具有更好的降解性能。
To facilitate video denoising research, we construct a compelling dataset, namely, "Practical Video Denoising Dataset" (PVDD), containing 200 noisy-clean dynamic video pairs in both sRGB and RAW format. Compared with existing datasets consisting of limited motion information, PVDD covers dynamic scenes with varying and natural motion. Different from datasets using primarily Gaussian or Poisson distributions to synthesize noise in the sRGB domain, PVDD synthesizes realistic noise from the RAW domain with a physically meaningful sensor noise model followed by ISP processing. Moreover, we also propose a new video denoising framework, called Recurrent Video Denoising Transformer (RVDT), which can achieve SOTA performance on PVDD and other current video denoising benchmarks. RVDT consists of both spatial and temporal transformer blocks to conduct denoising with long-range operations on the spatial dimension and long-term propagation on the temporal dimension. Especially, RVDT exploits the attention mechanism to implement the bi-directional feature propagation with both implicit and explicit temporal modeling. Extensive experiments demonstrate that 1) models trained on PVDD achieve superior denoising performance on many challenging real-world videos than on models trained on other existing datasets; 2) trained on the same dataset, our proposed RVDT can have better denoising performance than other types of networks.