论文标题
FFCNET:基于傅立叶变换的频率学习和结肠疾病分类的复杂卷积网络
FFCNet: Fourier Transform-Based Frequency Learning and Complex Convolutional Network for Colon Disease Classification
论文作者
论文摘要
可靠的结肠镜检查自动分类对于评估结肠病变阶段和制定适当的治疗计划具有重要意义。但是,由于亮度不平坦,位置变异性,类间的相似性和阶层内差异,这是一项挑战,影响了分类精度。为了解决上述问题,我们在本研究中提出了一个基于傅立叶的频率复杂网络(FFCNET),用于结肠疾病分类。具体而言,FFCNET是一个新颖的复杂网络,可以使复杂的卷积网络与频率学习的结合,以克服由实际卷积操作引起的相位信息丢失。同样,我们的傅立叶变换将图像的平均亮度传递到频谱中的一个点(DC组件)中的一个点,从而通过解耦图像含量和亮度来减轻亮度不均匀的影响。此外,FFCNET中的图像贴片争夺模块会生成随机的局部光谱块,使网络能够学习远程和局部疾病特定特征,并提高硬样品的歧视能力。我们在具有2568个结肠镜检查图像的内部数据集上评估了所提出的FFCNET,这表明我们的方法达到了高性能的表现优于先前的最新方法,其准确性为86:35%,准确性比骨干高4.46%。具有代码的项目页面可在https://github.com/soleilssss/ffcnet上找到。
Reliable automatic classification of colonoscopy images is of great significance in assessing the stage of colonic lesions and formulating appropriate treatment plans. However, it is challenging due to uneven brightness, location variability, inter-class similarity, and intra-class dissimilarity, affecting the classification accuracy. To address the above issues, we propose a Fourier-based Frequency Complex Network (FFCNet) for colon disease classification in this study. Specifically, FFCNet is a novel complex network that enables the combination of complex convolutional networks with frequency learning to overcome the loss of phase information caused by real convolution operations. Also, our Fourier transform transfers the average brightness of an image to a point in the spectrum (the DC component), alleviating the effects of uneven brightness by decoupling image content and brightness. Moreover, the image patch scrambling module in FFCNet generates random local spectral blocks, empowering the network to learn long-range and local diseasespecific features and improving the discriminative ability of hard samples. We evaluated the proposed FFCNet on an in-house dataset with 2568 colonoscopy images, showing our method achieves high performance outperforming previous state-of-the art methods with an accuracy of 86:35% and an accuracy of 4.46% higher than the backbone. The project page with code is available at https://github.com/soleilssss/FFCNet.