论文标题
用于回归和对象检测的参数和多元不确定性校准
Parametric and Multivariate Uncertainty Calibration for Regression and Object Detection
论文作者
论文摘要
对象检测模型的可靠空间不确定性评估是特别感兴趣的,并且已成为最近工作的主题。在这项工作中,我们回顾了现有的定义,以进行概率回归任务的不确定性校准。我们检查了共同检测网络的校准属性,并扩展了最新的重新校准方法。我们的方法使用高斯过程(GP)重新校准方案,该方案将参数分布作为输出(例如高斯或库奇)。 GP重新校准的使用允许通过捕获相邻样品之间的依赖性来进行局部(条件)不确定性校准。使用参数分布(例如高斯)允许在随后的过程中简化校准的适应性,例如,在对象跟踪范围内进行卡尔曼过滤。 此外,我们使用GP重新校准方案执行协方差估计,该估计允许事后引入对象检测中的输出量(例如位置,宽度或高度)之间的局部相关性。为了衡量多元和可能相关数据的关节校准,我们介绍了基于预测分布与地面真相之间的Mahalanobis距离的分位数校准误差,以确定地面真相是否在预测的分位数中。 我们的实验表明,与观察到的误差相比,常见检测模型高估了空间不确定性。我们表明,简单的等渗回归重新校准方法足以在校准的分位数方面实现良好的不确定性定量。相反,如果随后的过程需要正常的分布,则我们的GP非正常重新校准方法会产生最佳结果。最后,我们表明我们的协方差估计方法能够为联合多元校准获得最佳的校准结果。
Reliable spatial uncertainty evaluation of object detection models is of special interest and has been subject of recent work. In this work, we review the existing definitions for uncertainty calibration of probabilistic regression tasks. We inspect the calibration properties of common detection networks and extend state-of-the-art recalibration methods. Our methods use a Gaussian process (GP) recalibration scheme that yields parametric distributions as output (e.g. Gaussian or Cauchy). The usage of GP recalibration allows for a local (conditional) uncertainty calibration by capturing dependencies between neighboring samples. The use of parametric distributions such as as Gaussian allows for a simplified adaption of calibration in subsequent processes, e.g., for Kalman filtering in the scope of object tracking. In addition, we use the GP recalibration scheme to perform covariance estimation which allows for post-hoc introduction of local correlations between the output quantities, e.g., position, width, or height in object detection. To measure the joint calibration of multivariate and possibly correlated data, we introduce the quantile calibration error which is based on the Mahalanobis distance between the predicted distribution and the ground truth to determine whether the ground truth is within a predicted quantile. Our experiments show that common detection models overestimate the spatial uncertainty in comparison to the observed error. We show that the simple Isotonic Regression recalibration method is sufficient to achieve a good uncertainty quantification in terms of calibrated quantiles. In contrast, if normal distributions are required for subsequent processes, our GP-Normal recalibration method yields the best results. Finally, we show that our covariance estimation method is able to achieve best calibration results for joint multivariate calibration.