论文标题

潜在空间的对抗性扰动的异常检测

Anomaly Detection with Adversarially Learned Perturbations of Latent Space

论文作者

Khazaie, Vahid Reza, Wong, Anthony, Jewell, John Taylor, Mohsenzadeh, Yalda

论文摘要

异常检测是确定不符合正常数据分布的样品。由于异常数据的不可用,培训监督的深神经网络是一项繁琐的任务。因此,无监督的方法是解决此任务的常见方法。深度自动编码器已被广泛用作许多无监督异常检测方法的基础。但是,深层自动编码器的一个显着缺点是,它们通过概括重建异常值来提供不足的表示异常检测的表示。在这项工作中,我们设计了一个对抗性框架,该框架由两个竞争组件组成,一个对抗性扭曲器和一个自动编码器。对抗性变形器是一种卷积编码器,学会产生有效的扰动,而自动编码器是一个深层卷积神经网络,旨在重建来自扰动潜在特征空间的图像。对网络进行了相反的目标训练,在这种目标中,对抗性变形者会产生用于编码器潜在特征空间的扰动,以最大程度地增加重建误差,并且自动编码器试图中和这些扰动的效果以最大程度地减少其最小化。当应用于异常检测时,该提出的方法会由于对特征空间的扰动应用而学习语义上的富裕表示。所提出的方法在图像和视频数据集上的异常检测中优于现有的最新方法。

Anomaly detection is to identify samples that do not conform to the distribution of the normal data. Due to the unavailability of anomalous data, training a supervised deep neural network is a cumbersome task. As such, unsupervised methods are preferred as a common approach to solve this task. Deep autoencoders have been broadly adopted as a base of many unsupervised anomaly detection methods. However, a notable shortcoming of deep autoencoders is that they provide insufficient representations for anomaly detection by generalizing to reconstruct outliers. In this work, we have designed an adversarial framework consisting of two competing components, an Adversarial Distorter, and an Autoencoder. The Adversarial Distorter is a convolutional encoder that learns to produce effective perturbations and the autoencoder is a deep convolutional neural network that aims to reconstruct the images from the perturbed latent feature space. The networks are trained with opposing goals in which the Adversarial Distorter produces perturbations that are applied to the encoder's latent feature space to maximize the reconstruction error and the autoencoder tries to neutralize the effect of these perturbations to minimize it. When applied to anomaly detection, the proposed method learns semantically richer representations due to applying perturbations to the feature space. The proposed method outperforms the existing state-of-the-art methods in anomaly detection on image and video datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源