论文标题
fe $ {}^\ textbf {ann} $ - $基于物理受限的神经网络和自动数据挖掘的有效数据驱动的多尺度方法
FE${}^\textbf{ANN}$ $-$ An efficient data-driven multiscale approach based on physics-constrained neural networks and automated data mining
论文作者
论文摘要
在此,我们提出了一个新的数据驱动的多尺度框架,称为fe $ {}^\ text {ann} $,该框架基于两个主要钥匙石:物理受限的人工神经网络(ANN)作为宏观替代模型和一个自主数据挖掘过程。我们的方法可以有效地模拟具有复杂基础微观结构的材料,这些材料揭示了宏观上的整体各向异性和非线性行为。因此,我们暂时将自己限制为有限的应变超弹性问题。通过使用一组特定问题的不变性作为ANN的输入和Helmholtz自由能密度作为输出,几种物理原理,例如客观性,材料对称性,与角动量和热力学一致性平衡的兼容性。训练基于ANN的替代模型的必要数据,即宏观变形和相应的应力,是通过代表体积元素(RVE)的计算均质化收集的。因此,该方法的核心特征是通过整体循环中所需的数据集的完全自主挖掘给出的。在循环的每次迭代中,通过从宏观有限元(FE)模拟中收集宏观变形状态来生成新数据,然后通过使用所考虑材料的各向异性类别进行分类。最后,在RVE模拟中规定了所有未知的变形,以获得相应的应力,从而扩展数据集。因此,提出的框架允许将耗时的微观模拟数量减少到最低。它被示例应用于几个描述性示例,其中考虑了单个组件的高度非线性ogden型行为的纤维增强复合材料。
Herein, we present a new data-driven multiscale framework called FE${}^\text{ANN}$ which is based on two main keystones: the usage of physics-constrained artificial neural networks (ANNs) as macroscopic surrogate models and an autonomous data mining process. Our approach allows the efficient simulation of materials with complex underlying microstructures which reveal an overall anisotropic and nonlinear behavior on the macroscale. Thereby, we restrict ourselves to finite strain hyperelasticity problems for now. By using a set of problem specific invariants as the input of the ANN and the Helmholtz free energy density as the output, several physical principles, e.g., objectivity, material symmetry, compatibility with the balance of angular momentum and thermodynamic consistency are fulfilled a priori. The necessary data for the training of the ANN-based surrogate model, i.e., macroscopic deformations and corresponding stresses, are collected via computational homogenization of representative volume elements (RVEs). Thereby, the core feature of the approach is given by a completely autonomous mining of the required data set within an overall loop. In each iteration of the loop, new data are generated by gathering the macroscopic deformation states from the macroscopic finite element (FE) simulation and a subsequently sorting by using the anisotropy class of the considered material. Finally, all unknown deformations are prescribed in the RVE simulation to get the corresponding stresses and thus to extend the data set. The proposed framework consequently allows to reduce the number of time-consuming microscale simulations to a minimum. It is exemplarily applied to several descriptive examples, where a fiber reinforced composite with a highly nonlinear Ogden-type behavior of the individual components is considered.