论文标题
学会增加条件随机测试的功能
Learning to Increase the Power of Conditional Randomization Tests
论文作者
论文摘要
Model-X条件随机测试是有条件独立测试的通用框架,解锁了新的可能性,以发现与感兴趣的响应有条件相关的特征,同时控制I型错误率。该测试的一个吸引力的优势是它可以与任何机器学习模型一起使用来设计强大的测试统计数据。反过来,模型X文献中的常见实践是使用机器学习模型形成一个测试统计量,经过培训,以最大程度地提高预测精度,希望能够获得良好的功率测试。但是,这里的理想目标是推动模型(在训练期间)以最大化测试的功能,而不仅仅是预测精度。在本文中,我们通过首次引入新型模型拟合方案来弥合这一差距,这些方案旨在明确提高Model-X测试的功能。这是通过引入新的成本函数来完成的,该功能旨在最大化用于衡量有条件独立性违反的测试统计量。使用综合和真实数据集,我们证明了我们提出的损失函数与各种基本预测模型(Lasso,弹性网和深神经网络)的组合始终增加所获得的正确发现的数量,同时维持在控制下的I型错误率。
The model-X conditional randomization test is a generic framework for conditional independence testing, unlocking new possibilities to discover features that are conditionally associated with a response of interest while controlling type-I error rates. An appealing advantage of this test is that it can work with any machine learning model to design powerful test statistics. In turn, the common practice in the model-X literature is to form a test statistic using machine learning models, trained to maximize predictive accuracy with the hope to attain a test with good power. However, the ideal goal here is to drive the model (during training) to maximize the power of the test, not merely the predictive accuracy. In this paper, we bridge this gap by introducing, for the first time, novel model-fitting schemes that are designed to explicitly improve the power of model-X tests. This is done by introducing a new cost function that aims at maximizing the test statistic used to measure violations of conditional independence. Using synthetic and real data sets, we demonstrate that the combination of our proposed loss function with various base predictive models (lasso, elastic net, and deep neural networks) consistently increases the number of correct discoveries obtained, while maintaining type-I error rates under control.