论文标题
在弱(测量值) - 带有Dirichlet边界条件的Navier-Stokes-stokes-stokes-stokes-Strong独特性
On weak(measure valued)-strong uniqueness for Navier-Stokes-Fourier system with Dirichlet boundary condition
论文作者
论文摘要
在本文中,我们的目标是定义一个可压缩的Navier的尺寸有价值的解决方案 - 刺激系统,以用于在有界域中温度的dirichlet边界条件的热传导流体。该定义基于熵不平等和弹道能量不等式的弱制。此外,我们在相对能量的帮助下获得了该解决方案的弱(测量值) - 巨大的唯一性。
In this paper, our goal is to define a measure valued solution of compressible Navier--Stokes--Fourier system for a heat conducting fluid with Dirichlet boundary condition for temperature in a bounded domain. The definition is based on the weak formulation of entropy inequality and ballistic energy inequality. Moreover, we obtain the weak(measure valued)-strong uniqueness property of this solution with the help of relative energy.